Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Pain, a pervasive global health concern, affects a large segment of population worldwide. Accurate pain assessment remains a challenge due to the limitations of conventional self-report scales, which often yield inconsistent results and are susceptible to bias. Recognizing this gap, our study introduces PainAttnNet, a novel deep-learning model designed for precise pain intensity classification using physiological signals. We investigate whether PainAttnNet would outperform existing models in capturing temporal dependencies. The model integrates multiscale convolutional networks, squeeze-and-excitation residual networks, and a transformer encoder block. This integration is pivotal for extracting robust features across multiple time windows, emphasizing feature interdependencies, and enhancing temporal dependency analysis. Evaluation of PainAttnNet on the BioVid heat pain dataset confirm the model’s superior performance over the existing models. The results establish PainAttnNet as a promising tool for automating and refining pain assessments. Our research not only introduces a novel computational approach but also sets the stage for more individualized and accurate pain assessment and management in the future.more » « less
-
Feng, Mengling (Ed.)Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work reviews and analyzes a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics.more » « less
-
Automatic pain intensity assessment from physiological signals has become an appealing approach, but it remains a largely unexplored research topic. Most studies have used machine learning approaches built on carefully designed features based on the domain knowledge available in the literature on the time series of physiological signals. However, a deep learning framework can automate the feature engineering step, enabling the model to directly deal with the raw input signals for real-time pain monitoring. We investigated a personalized Bidirectional Long short-term memory Recurrent Neural Networks (BiLSTM RNN), and an ensemble of BiLSTM RNN and Extreme Gradient Boosting Decision Trees (XGB) for four-category pain intensity classification. We recorded Electrodermal Activity (EDA) signals from 29 subjects during the cold pressor test. We decomposed EDA signals into tonic and phasic components and augmented them to original signals. The BiLSTM-XGB model outperformed the BiLSTM classification performance and achieved an average F1-score of 0.81 and an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.93 over four pain states: no pain, low pain, medium pain, and high pain. We also explored a concatenation of the deep-learning feature representations and a set of fourteen knowledge-based features extracted from EDA signals. The XGB model trained on this fused feature set showed better performance than when it was trained on component feature sets individually. This study showed that deep learning could let us go beyond expert knowledge and benefit from the generated deep representations of physiological signals for pain assessment.more » « less
-
Chronic pain is a major cause of disability worldwide. While acute pain may serve as a protective function, chronic pain and the associated changes in neural processing negatively impact function and quality of life. This neural plasticity may include changes to the autonomic nervous system (ANS) potentially detectable as changes in various physiological signals. Our aim is to evaluate differences in the physiological signals reflecting ANS changes, by comparing healthy subjects and patients with chronic low back pain during standardized pain stimuli. We extracted several features from photoplethysmography (PPG), electrodermal activity (EDA), and respiration, both at rest and during a repeated pinprick test. We found significant group differences in some PPG parameters at rest and in response to the repeated pinprick test. Chronic pain patients had consistently higher basal sympathetic activity, as well as a blunted autonomic response when subjected to nociceptive stimuli.more » « less
-
In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected from 84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing.more » « less
-
Le, Khanh N.Q. (Ed.)In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device.more » « less
-
Manufacturing has adopted technologies such as automation, robotics, industrial Internet of Things (IoT), and big data analytics to improve productivity, efficiency, and capabilities in the production environment. Modern manufacturing workers not only need to be adept at the traditional manufacturing technologies but also ought to be trained in the advanced data-rich computer-automated technologies. This study analyzes the data science and analytics (DSA) skills gap in today’s manufacturing workforce to identify the critical technical skills and domain knowledge required for data science and intelligent manufacturing-related jobs that are highly in-demand in today’s manufacturing industry. The gap analysis conducted in this paper on Emsi job posting and profile data provides insights into the trends in manufacturing jobs that leverage data science, automation, cyber, and sensor technologies. These insights will be helpful for educators and industry to train the next generation manufacturing workforce. The main contribution of this paper includes (1) presenting the overall trend in manufacturing job postings in the U.S., (2) summarizing the critical skills and domain knowledge in demand in the manufacturing sector, (3) summarizing skills and domain knowledge reported by manufacturing job seekers, (4) identifying the gaps between demand and supply of skills and domain knowledge, and (5) recognize opportunities for training and upskilling workforce to address the widening skills and knowledge gap.more » « less
-
Optimization of pain assessment and treatment is an active area of research in healthcare. The purpose of this research is to create an objective pain intensity estimation system based on multimodal sensing signals through experimental studies. Twenty eight healthy subjects were recruited at Northeastern University. Nine physiological modalities were utilized in this research, namely facial expressions (FE), electroencephalography (EEG), eye movement (EM), skin conductance (SC), and blood volume pulse (BVP), electromyography (EMG), respiration rate (RR), skin temperature (ST), blood pressure (BP). Statistical analysis and machine learning algorithms were deployed to analyze the physiological data. FE, EEG, SC, BVP, and BP proved to be able to detect different pain states from healthy subjects. Multi-modalities proved to be promising in detecting different levels of painful states. A decision-level multi-modal fusion also proved to be efficient and accurate in classifying painful states.more » « less
An official website of the United States government

Full Text Available